Susceptibility of β1 Na+-K+ pump subunit to glutathionylation and oxidative inhibition depends on conformational state of pump.

نویسندگان

  • Chia-Chi Liu
  • Alvaro Garcia
  • Yasser A Mahmmoud
  • Elisha J Hamilton
  • Keyvan Karimi Galougahi
  • Natasha A S Fry
  • Gemma A Figtree
  • Flemming Cornelius
  • Ronald J Clarke
  • Helge H Rasmussen
چکیده

Glutathionylation of cysteine 46 of the β1 subunit of the Na(+)-K(+) pump causes pump inhibition. However, the crystal structure, known in a state analogous to an E2·2K(+)·P(i) configuration, indicates that the side chain of cysteine 46 is exposed to the lipid bulk phase of the membrane and not expected to be accessible to the cytosolic glutathione. We have examined whether glutathionylation depends on the conformational changes in the Na(+)-K(+) pump cycle as described by the Albers-Post scheme. We measured β1 subunit glutathionylation and function of Na(+)-K(+)-ATPase in membrane fragments and in ventricular myocytes. Signals for glutathionylation in Na(+)-K(+)-ATPase-enriched membrane fragments suspended in solutions that preferentially induce E1ATP and E1Na(3) conformations were much larger than signals in solutions that induce the E2 conformation. Ouabain further reduced glutathionylation in E2 and eliminated an increase seen with exposure to the oxidant peroxynitrite (ONOO(-)). Inhibition of Na(+)-K(+)-ATPase activity after exposure to ONOO(-) was greater when the enzyme had been in the E1Na(3) than the E2 conformation. We exposed myocytes to different extracellular K(+) concentrations to vary the membrane potential and hence voltage-dependent conformational poise. K(+) concentrations expected to shift the poise toward E2 species reduced glutathionylation, and ouabain eliminated a ONOO(-)-induced increase. Angiotensin II-induced NADPH oxidase-dependent Na(+)-K(+) pump inhibition was eliminated by conditions expected to shift the poise toward the E2 species. We conclude that susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na(+)-K(+) pump.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stimulation of the cardiac myocyte Na+-K+ pump due to reversal of its constitutive oxidative inhibition.

Protein kinase C can activate NADPH oxidase and induce glutathionylation of the β1-Na(+)-K(+) pump subunit, inhibiting activity of the catalytic α-subunit. To examine if signaling of nitric oxide-induced soluble guanylyl cyclase (sGC)/cGMP/protein kinase G can cause Na(+)-K(+) pump stimulation by counteracting PKC/NADPH oxidase-dependent inhibition, cardiac myocytes were exposed to ANG II to ac...

متن کامل

Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation.

Angiotensin II (Ang II) inhibits the cardiac sarcolemmal Na(+)-K(+) pump via protein kinase (PK)C-dependent activation of NADPH oxidase. We examined whether this is mediated by oxidative modification of the pump subunits. We detected glutathionylation of beta(1), but not alpha(1), subunits in rabbit ventricular myocytes at baseline. beta(1) Subunit glutathionylation was increased by peroxynitri...

متن کامل

CALL FOR PAPERS Cell Signaling: Proteins, Pathways and Mechanisms 3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na -K pump in hyperglycemia induced by insulin receptor blockade

Karimi Galougahi K, Liu CC, Garcia A, Fry NA, Hamilton EJ, Figtree GA, Rasmussen HH. 3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na -K pump in hyperglycemia induced by insulin receptor blockade. Am J Physiol Cell Physiol 309: C286 –C295, 2015. First published June 10, 2015; doi:10.1152/ajpcell.00071.2015.—Dysregulated nitric oxide (NO)and superoxide (O2 )-dependent si...

متن کامل

β(3) adrenergic stimulation of the cardiac Na+-K+ pump by reversal of an inhibitory oxidative modification.

BACKGROUND inhibition of L-type Ca(2+) current contributes to negative inotropy of β(3) adrenergic receptor (β(3) AR) activation, but effects on other determinants of excitation-contraction coupling are not known. Of these, the Na(+)-K(+) pump is of particular interest because of adverse effects attributed to high cardiac myocyte Na(+) levels and upregulation of the β(3) AR in heart failure. ...

متن کامل

The Apical Localization of Na+, K+-ATPase in Cultured Human Retinal Pigment Epithelial Cells Depends on Expression of the β2 Subunit

Na+, K+-ATPase, or the Na+ pump, is a key component in the maintenance of the epithelial phenotype. In most epithelia, the pump is located in the basolateral domain. Studies from our laboratory have shown that the β1 subunit of Na+, K+-ATPase plays an important role in this mechanism because homotypic β1-β1 interactions between neighboring cells stabilize the pump in the lateral membrane. Howev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 287 15  شماره 

صفحات  -

تاریخ انتشار 2012